
简 历:
现任中国科学院城市环境研究所所长,生态环境研究中心研究员。中国工程院院士。
1994年在日本东京大学获得博士学位,在日本、美国、加拿大留学和工作十余年。回国后主要研究方向为环境催化和大气非均相化学,取得了柴油车排放污染控制、室内空气净化和大气灰霾成因及控制方面的系列成果。2004年获国家杰出青年科学基金资助。以第一完成人获2011年国家技术发明二等奖、2014年国家科技进步二等奖、2017年何梁何利基金科学与技术创新奖、2019年国家自然科学奖二等奖。发表《环境催化——原理及应用》等专著3部;发表学术论文680余篇,总被引44800余次;获授权国内外发明专利110余项,其中多项已转让给企业实施应用。现任Environ Sci Technol和J Environ Sci副主编以及Appl Catal B等国内外期刊编委。
获奖及荣誉:
1、2024年 获中国科学院杰出科技成就奖;
2、2020年 获全国创新争先奖状;
3、2019年 获国家自然科学奖二等奖(第一完成人);
4、2017年 当选中国工程院院士;
5、2017年 获何梁何利基金科学与技术创新奖;
6、2014年 获国家科学技术进步奖二等奖(第一完成人);
7、2011年 获国家技术发明奖二等奖(第一完成人);
代表性论著:
50. “Photoactivation of chlorine and its catalytic role in the formation of sulfate aerosols”, J. Am. Chem. Soc., 146, (2024) 1467-1475.
49. “Identification of direct anchoring sites for monoatomic dispersion of precious metals (Pt, Pd, Ag) on CeO2 support”, Angew. Chem. Int. Ed., 63, (2024) e202318492.
48. “Spatial distribution of Brønsted acid sites determines the mobility of reactive Cu ions in the Cu-SSZ-13 catalyst during the selective catalytic reduction of NOx with NH3”, J. Am. Chem. Soc., 146, (2024) 11141-11151.
47. “Chemical implications of rapid reactive absorption of I2O4 at the air-water interface”, J. Am. Chem. Soc., 145, (2023) 10817-10825.
46. “Photocatalytic oxidation of NO2 on TiO2: Evidence of a new source of N2O5”, Angew. Chem. Int. Ed., (2023) e202304017.
45. “Strikingly distinctive NH3-SCR behavior over Cu-SSZ-13 in the presence of NO2”, Nat. Commun., 13, (2022) 4606-4615.
44. “Smog chamber study on the role of NOx in SOA and O3 formation from aromatic hydrocarbons”, Environ. Sci. Technol., 56(19), (2022) 13654-13663.
43. “Generation and release of OH radicals from the reaction of H2O with O2 over soot”, Angew. Chem. Int. Ed., 61, (2022) e202201638.
42. “Diesel soot photooxidation enhances the heterogeneous formation of H2SO4”, Nat. Commun., 13, (2022) 5364-5372.
41. “Coordinated control of fine-particle and ozone pollution by the substantial reduction of nitrogen oxides”, Engineering, 15, (2022) 13-16.
40. “Dynamic change of active sites of supported vanadia catalysts for selective catalytic reduction of nitrogen oxides”, Environ. Sci. Technol., 56(2), (2022) 3710-3718.
39. “Application of smog chambers in atmospheric process studies”, National. Sci. Review, nwab103 (2022), https://doi.org/10.1093/nsr/nwab103.
38. “Adsorption-induced active vanadium species facilitate excellent performance in low-temperature catalytic NOx abatement”, J. Am. Chem. Soc., 143, (2021) 10454-10461.
37. “Mechanistic study of the aqueous reaction of organic peroxides with HSO3- on the surface of a water droplet”, Angew. Chem. Int. Ed., 60, (2021) 20200-20203.
36. “Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites”, National. Sci. Review, 8, (2021) nwab010.
35. “Superior oxidative dehydrogenation performance toward NH3 determines the excellent low-temperature NH3-SCR activity of Mn-based catalysts”, Environ. Sci. Technol., 55, (2021) 6995-7003.
34. “Unprecedented Ambient Sulphur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric Implications”, Environ. Sci. Technol. Lett., 7, (2020) 809-818.
33. “Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 Control”, Environ. Sci. Technol. Lett., 7, (2020) 695-700.
32. “Impacts of SO2, relative humidity, and seed acidity on secondary organic aerosol formation in the ozonolysis of butyl vinyl ether”, Environ. Sci. Technol., 53, (2019) 8845-8853.
31. “Quantitative study of the NH3-SCR pathway and the active site distribution over CeWOx at low temperatures”, J. Catal., 369, (2019) 372-384.
30. “Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOx with NH3”, Sci. Adv., 4, (2018) eaau4637.9
29. “Role of carbonaceous aerosols in catalyzing sulfate formation”, ACS. Catal., 8, (2018) 3825-3832.
28. “The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3”, Appl. Catal. B, 230, (2018)165-176.
27. “Hydrothermal stability of CeO2−WO3−ZrO2 mixed oxides for selective catalytic reduction of NOx by NH3”, Environ. Sci. Technol., 52, (2018) 11769-11777.
26. “Structure-activity relationship of surface hydroxyl groups during NO2 adsorption and transformation on TiO2 nanoparticles”, Environ. Sci. Nano., 4, (2017) 2388-2394.
25. “Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition”, Appl. Catal. B., 201, (2017) 503-510.
24. “Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth”, Atmos. Chem. Phys., 16, (2016) 14219-14230.
23. “Effects of precursors for manganese-loaded g-Al2O3 catalysts on plasma-catalytic removal of o-xylene”, Chem. Eng. J., 288, (2016) 406-413.
22. “Effects of post-treatment method and Na co-cation on thehydrothermal stability of Cu–SSZ-13 catalyst for the selective catalyticreduction of NOx with NH3”, Appl. Catal. B., 179, (2015) 206-212.
21. “Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts”, Appl. Catal. B., 179, (2015) 21-28.
20. “Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: Structure-activity relationship and reaction mechanism aspects”, Chem. Commun., 50 (62), (2014) 8445-8463.
19. “A common feature of H2-assisted HC-SCR over Ag/Al2O3”, Catal. Sci. Technol., 4, (2014) 1239-1245.
18. “Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days”, Sci. Rep., 4, (2014) 04172.
17. “Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene”, Appl. Catal. B., 142-143, (2013) 72-79.
16. “Heterogeneous and multiphase formation pathways of gypsum in the atmosphere”, Phys. Chem. Chem. Phys., 15, (2013) 19196-19204.
15. “Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3”, J. Catal., 307, (2013) 340-351.
14. “Role of organic carbon in heterogeneous reaction of NO2 with soot”, Environ. Sci. Technol., 47, (2013) 3174-3181.
13. “Key role of organic carbon in the sunlight enhanced atmospheric aging of soot by O2”, Proc. Nat. Acad. Sci. USA., 109(52), (2012) 21250-21255.
12. “Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures”, Angew. Chem. Int. Ed., 51, (2012) 9628-9632.
11. “Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol”, Phys. Chem. Chem. Phys., 14, (2012) 1668-1676.
10. “Heterogeneous uptake of carbonyl sulfide onto kaolinite within a temperature range of 220–330 K”, J. Geophys. Res., 115, (2010) D24311.
9. “Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3”, J. Phys. Chem. C., 114, (2010) 16929-16936.
8. “Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study”, Atmos. Chem. Phys., 10, (2010) 10335-10344.
7. “Remarkable influence of reductant structure on the activity of alumina-supported silver catalyst for the selective catalytic reduction of NOx”, J. Catal., 271, (2010) 343-350.
6. “Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization”, Appl. Catal. B., 96, (2010) 408-420.
5. “Precipitable silver compound catalysts for the selective catalytic reduction of NOx by ethanol”, Appl. Catal. A., 375, (2010) 258-264.
4. “Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3”, J. Catal., 268, (2009) 18-25.
3. “Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3”, Appl. Catal. B., 93, (2009) 194-204.
2. “Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition”, Environ. Sci. Technol., 43, (2009) 890-895.
1. “Synergistic effect between NO2 and SO2 in their adsorption and reaction on -Alumina”, J. Phys. Chem. A., 112, (2008) 6630-6635.
承担科研项目情况:
1.国家自然科学基金委 基础科学中心项目:大气霾化学(2022-2026)主持;
2.中国科学院国际合作局海外科教合作中心部署项目:斯里兰卡黑碳污染特征和控制对策研究(2025-2027)主持;
3.中国工程院战略研究与咨询项目:环境与轻纺工程学部前瞻性储备性研究:课题名称:大气臭氧污染控制新思路研究(2023-2026)主持